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Effect of multiple time delays on intensity fluctuation dynamics in fiber ring lasers
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The effect of time delay on nonlinear oscillators is an important problem in the study of dynamical systems.
The dynamics of an erbium-doped fiber ring laser with an extra loop providing time-delayed feedback is
studied experimentally by measuring the intensity of the laser. The delay time for the feedback is varied from
~0.3 to ~900 times the cavity round-trip time, over four orders of magnitude, by changing the length of fiber
in the delay line. Depending on the delay, we observe either regular oscillations or complex dynamics. The size
of the fluctuations increases for delays long compared with the round-trip time of the laser cavity. The
complexity of the fluctuations is quantified by creating spatiotemporal representations of the time series and
performing a Karhunen-Loeve decomposition. The complexity increases with increasing delay time. The ex-
periment is extended by mutually coupling two fiber ring lasers together. The delay time for the mutual
coupling is varied from ~0.2 to ~600 times the cavity round-trip time, over four orders of magnitude again.
In this case the fluctuations are generally larger than the single laser case. The complexity of the dynamics for
the mutually coupled system is less at short delays and larger at long delays when compared to the uncoupled

case. The width of the optical spectra of the coupled lasers also narrows.
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I. INTRODUCTION

Many systems in nature and engineering interact with
each other and communicate by way of some coupling
mechanism. Since communicating signals between coupled
systems have a finite velocity, there must be a nonzero finite
delay in the coupling schemes. The dynamics of delay-
coupled systems are rich and varied, and very important for
the consideration of biological, chemical, and physical sys-
tems, including neurons, chemical reactions involving trans-
port processes, laser systems, and electronic circuits [1,2].
Delays are often neglected for simplicity, and this may be a
good approximation when they are very short compared to
other system time scales. When this is not the case, as has
become very clear over the past decade, time delays play a
very important role in the dynamics and function of networks
of coupled elements, and often influence their collective dy-
namics. Studies of single time-delayed systems show that
increasing delays typically lead to more complex, high-
dimensional dynamics [3]. The adaptive nature of systems
with delays, such as the variability of the number of degrees
of freedom involved at a given point in their time evolution,
is of interest and significance for specific applications [4].

An excellent testbed for the examination of delayed cou-
pling communication systems occurs in optical communica-
tion. Optical communication using chaotic wave forms offers
potential advantages in terms of privacy [5] and robustness
due to broadband transmission [6]. Recently, chaos-based
communication was demonstrated over 120 km of commer-
cial fiber optic line in Athens, Greece [6]. As chaotic com-
munication systems and ideas are developed it will be impor-
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tant to understand how the components of the system interact
over transmission lines that are kilometers long. Conse-
quently, the dynamics of the coupled components in the pres-
ence of long delays needs to be understood. Previously opti-
cal communication using chaotic wave forms has been
demonstrated in the laboratory with erbium-doped fiber ring
lasers (EDFRL) [7,8]. Fiber lasers are attractive because of
their high dimensionality and large bandwidth, which add to
privacy [5], and offer the possibility of an all optical com-
munication system [9].

A good understanding of the dynamics of EDFRLS is nec-
essary to develop effective systems. The optical cavity of an
EDFRL can be long enough that the round-trip time, 7,, is
hundreds of nanoseconds long and easily resolvable with
modern detectors and oscilloscopes. Previous work [10] has
taken advantage of the measurable resolution time and found
that the light output has a steady-state intensity with small
fluctuations about the mean. These fluctuations produce a
pattern over one round trip that changes slowly over many
subsequent round trips as noise modifies it [11]. The evolu-
tion of the patterns is very slow compared to 7,. The patterns
are not regular or periodic within the round trip, but are
stable for hundreds of round trips.

Long cavity length and broad gain profile allow thousands
of longitudinal modes to exist simultaneously in the cavity
[11], preventing a reduction to a simple low-dimensional sys-
tem, such as those used to model semiconductor lasers [12].
The lasers each have thousands of lasing modes that are non-
linear oscillators globally coupled through sharing popula-
tion inversion. It is a daunting task to model the laser sys-
tems with hundreds or thousands of coupled-mode equations,
since many unknown parameters relating to the mode-
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coupling would be involved [13]. A time domain model that
involves delay-differential equations has sometimes been
employed as an alternative [2,11] but even this approach pre-
sents serious difficulties when long lengths of fiber with ran-
dom birefringence fluctuations are involved. Because of
these difficulties typical of fiber laser systems we chose to
employ the Karhunen-Loéve (KL) decomposition of spa-
tiotemporal representations of the time series data. This pro-
cess derives a data driven model of the system.

In communication systems, a single laser becomes useful
when it interacts with other systems. Injection locking of
lasers is a common practice that can be used to lock the
frequency and phase of a laser to an injected signal if the
injected signal is strong enough, as discussed in Chap. 9 of
[14] and Sec. 7.3 of [15]. Previous modeling indicated that
this can affect the intracavity dynamics of the laser [16].
Researchers have experimentally studied the synchronization
of chaotic EDFRLs with unidirectional coupling where light
is injected from one laser into a second laser [17-19]. These
papers presented time series 1 ms long or greater and did not
examine the intracavity dynamics. They also did not examine
variations due to multiple coupling line lengths, and the cou-
pling line lengths were short, except for the work of Kim et
al. [19], which used a 1.5 km length coupling line. Mutual
coupling of two EDFRLs can be achieved by injecting light
from laser 1 into laser 2 and simultaneously injecting light
from laser 2 into laser 1. The synchronization of mutually
coupled chaotic lasers was recently studied experimentally
and theoretically [20,21]. These papers examined the intrac-
avity dynamics of the matched lasers with 46 m cavity
lengths and used matched coupling lines 9 m long. The effect
of coupling strength was analyzed in detail. When coupled
with strong enough coupling, the two lasers became chaotic
and delay synchronized with a delay equal to the length of
the coupling lines. The intracavity intensity patterns repeated
over several round trips. Another recent paper specifically
analyzed the effect of the transmission line on the ability of a
system to communicate using chaotic lasers [22]. This nu-
merical work considered transmission lines hundreds of ki-
lometers long, but only evaluated the quality of data trans-
mission, not the effect of varying the transmission, or
coupling, delay on the lasers’ dynamics. There have also
been many studies on leader-follower dynamics and switch-
ing in coupled semiconductor lasers [23].

A recent study examined the effect of time delays on the
synchronization of semiconductor lasers using a cross corre-
lation [24]. Their results showed that isochronal synchroni-
zation occurs for two mutually coupled lasers when the two
lasers also have self-feedback. The time delays of the mutual
coupling and self-feedback were equal. With self-feedback
only, there was no synchronization because there was no
mutual coupling. With mutual coupling only, achronal syn-
chronization was observed and the cross-correlation peaks
were offset from zero by the coupling delay time. As de-
scribed in the next section, our work on fiber lasers examines
the effects of feedback and mutual coupling separately.

II. OUTLINE

In this paper we experimentally analyze the effect of time-
delayed input to EDRFLs to better understand the basic dy-
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namics of the lasers when subjected to small delayed inputs.
The EDFRLs are not forced to operate in a chaotic regime.
We consider two basic configurations: (1) A single fiber ring
laser with a self-feedback loop and (2) two fiber ring lasers
that are mutually coupled with fiber delay lines. We consider
a single fiber ring laser and add a feedback loop that we will
add extra fiber to in order to vary the feedback delay time, 7.
This delay is varied over four orders of magnitude to exam-
ine the effect of delay for cases where 7<r7,, =71, 7>7,
and 7> 7. We initially look at only a single laser with feed-
back for two reasons. First, EDFRL experiments use extra
loops in the cavity to make communication more secure
[7.19] and to generate multiple wavelengths [25]. Second,
we want to have results from the simpler case of a single
laser with feedback to compare to the results from the mu-
tually coupled experiment. The coupling strength, «, is moni-
tored to keep it constant for all delays. We analyze the fluc-
tuations using a variety of techniques to visualize and
quantify the dynamical behavior observed. We also examine
the optical spectra. These observations and analysis are re-
peated for two mutually coupled EDFRLs using coupling
delays, also referred to as 7. Additionally, we examine the
synchronization of the two EDFRLs.

We display the dynamics of the laser intensity using time-
series plots, power spectra, time-delay embeddings, and a
spatiotemporal representation of the time series. We use sev-
eral methods to visualize different aspects of the dynamics.
The time-series plots of the laser intensity show patterns in
the dynamics such as regular oscillations and the round-trip
repetition, or the apparent lack of regular structure. We will
look at time series on the scale of both 7, and 7. Power
spectra show which frequencies dominate the dynamics.
Time-delay embeddings are used to reconstruct the phase
space of a dynamical system from a time series of experi-
mental data [26,27]. Plots of the time series in these embed-
dings are a way to view the complexity of the time series and
can illustrate the nature of the dynamical behavior. Finally,
spatiotemporal representations are a way to visualize a time
series that has dynamics with two different time scales in it
[28]. The one-dimensional time series is recast into a two-
dimensional (2D) representation by breaking the time series
up into sections with a size determined by an important time
scale. In previous work both the ring laser round-trip time
[20,21] and the feedback delay time [28] have both been
used. To build the spatiotemporal representation the time se-
ries is broken up into strips of data that are one time scale in
length. These strips are then stacked on top of each other.
The resulting data set is plotted with different colors repre-
senting different values of intensity, where each point is in-
dexed by time within the time scale and the number of time
scales. We used the round-trip time as our basis in order to
compare the results for different delay times. The spatial part
of the representation comes from mapping the times within a
round trip to positions along the ring cavity [29]. This idea
uses Taylor’s hypothesis from fluid mechanics [30], which
states that if a fluid flow is fast enough a spatial pattern of
turbulence can be measured by a single detector at a fixed
location as the fluid moves past it. In our case the light
propagating around the ring is the flow and the relatively
stable round-trip patterns are measured at a single point at
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the output of the ring cavity. These plots can display large
amounts of data compactly and show features with different
time scales so that the round-trip pattern stability can be
observed and comparisons made between data sets. These
four methods provide different ways of visualizing data that
give us a qualitative understanding of the dynamics. We use
them as a starting point to derive quantitative measures of
the dynamical characteristics.

The size of the fluctuations in a time series is quantified
by the ratio of the standard deviation of the time series to its
mean. Normalizing to the mean allows us to compare the
relative fluctuation size between data sets. To quantify the
complexity of the dynamics we perform a KL decomposition
on the spatiotemporal representation [31]. KL decomposition
has many other names, including proper orthogonal decom-
position and principal component analysis [32]. Previous
work with lasers has used this technique to analyze numeri-
cal and experimental data sets of one-dimensional spatial
patterns of intensity from multiple stripe and broad area
semiconductor lasers [33]. Here, we apply the technique to
the data in our spatiotemporal representation. This data has
the same format as the data in the previous work cited, but
we form our spatial dimension from our map to ring position
in the spatiotemporal representation. We consider two meth-
ods to quantify the complexity using the results of the KL
decomposition. First, we note that the number of KL. modes
needed to reconstruct the system dynamics to a given accu-
racy will be small for round-trip patterns that are consistently
present in the dynamics and larger when the dynamics are
composed of many different patterns over the time scale con-
sidered. This gives us a measure of the overall complexity of
the time series. Second, we interpret the eigenvalues of the
KL modes to be the probabilities that the mode will occur
[31,34] and calculate the Shannon entropy, or information, of
the modes [35].

The variation of the widths and heights of peaks in the
optical spectra are also considered to determine if the lasing
wavelength is affected by the second feedback loop or cou-
pling to a second laser. Spectral measurements provide us
with a means to assess the influence of the feedback or cou-
pling on the coherence properties of the lasers.

II1. RING LASER WITH FEEDBACK

Figure 1 shows the setup for the experiment with feed-
back. The laser has an erbium-doped fiber amplifier and is
tuned to operate at a wavelength of 1550 nm using the po-
larization controller. The laser was pumped at 8.0 times the
threshold pumping rate. Fiber couplers are used to guide
light out of one fiber and inject it into another fiber. Optical
isolators enforce the propagation direction around the ring.
Some of the light is routed from the ring through a feedback
line into which different lengths of fiber are inserted to
change the delay time of the feedback.

We measured the round-trip time of the ring by making
use of the repetition of the round-trip patterns. This repetition
occurs because the upper laser level lifetime is very long (
~10 us) so the population inversion responds very slowly
compared to the laser field. We calculate the power spectra of
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FIG. 1. Experimental setup for the laser with feedback. The
arrows show the direction of light propagation through the ring and
the feedback line. EDFA, erbium-doped fiber amplifier; PC, polar-
ization controller consisting of a sequence of linear polarizer, one-
quarter wave plate, one-half wave plate, and one-quarter wave
plate; VA, variable attenuator; DL, delay line; OSC A, photodetec-
tor and oscilloscope used to measure laser dynamics; OSC B, pho-
todetector and oscilloscope used to monitor the feedback line; OSA,
optical spectrum analyzer.

five 1-ms time series of intensity data. Because of the round-
trip repetition there is a spectral peak at the round-trip time
along with higher harmonics. We average the frequency of
the first peak for all five spectra and invert it to find 7,
=213.9 ns, which corresponds to a cavity length of about 44
m.
The feedback line length varied from 14 m to 38 km
which corresponds to delay times of 0.068 us to 187 us.
This wide range of times allows us to see how the dynamics
are affected when 7 is less than, comparable to, and larger
than 7,. The light intensity in the feedback line is monitored
with an oscilloscope. A variable attenuator is used to adjust
the light levels in the line. This allows us to correct for the
different losses in the different lengths of the feedback line
and to keep the coupling strength constant for all of the data
runs. The coupling strength is defined as the ratio of the
power injected into the ring from the feedback line to the
power in the ring. In the experiments described here we
chose k=1%. This coupling strength was set by the losses in
the couplers and connectors and the amount of absorption in
the 38 km line. We used the variable attenuator to keep «
constant. The light intensity is measured by a 125 MHz
bandwidth photodetector and a digital oscilloscope sampling
every 1.0 ns. Five 1-ms-long time series are recorded for
each delay time. An optical spectrum analyzer is used to
monitor the wavelength of the laser.

A. Fluctuation size and dynamical complexity of round-trip
patterns

We normalize the intensity time series by dividing each
one by its mean. The means of the intensities remained con-
stant. The dynamics of the normalized laser output is plotted
over five round trips in Fig. 2(a) for the laser without feed-
back. Figures 2(b)-2(i) show the results for the laser with
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a) No feedback

(b) t=0.068 us
61 (c)t=0.118 us

(d) t=0.225 us

51 (e)t=0.560pus
(f)t=1.05us

4] (@t=103us

Intensity normalized by the mean

(h) T =120 us
3.
2 .
(i) t=187 s
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Time (round trips of 214 ns)
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The DC component at 0 MHz is not shown.

FIG. 2. The left-hand column shows laser output intensities over five round trips where the round-trip time is 214 ns. Each time series
is normalized by its mean, and the plots are offset for clarity. (a) is for the laser without feedback. (b)—(i) are for the laser with feedback with
the time delay, 7, given. The right-hand column has power spectra of the five round trips shown for each time series. The DC component at

0 Hz has been omitted to better show the detail of the spectra.

feedback with various delays. The plots in the figure have
been offset for clarity. Without the offset they would all be
centered on an intensity of 1 due to the normalization. Peri-
odic dynamics is usually observed at a delay time 7of 1 us
or less, with periods much smaller than 7,. Figures 2(c) and
2(d) display patterns with a period of approximately one-half
the round-trip time and one round trip, respectively. The last
three plots show that the dynamics repeat over a round trip,
that the magnitude of the fluctuations increases for large de-

lays, and that the patterns within a round trip are very irregu-
lar compared to the regular oscillations at shorter delays.
Note that the intensity scale is the same for all plots, so the
relative increase in intensity fluctuations is conspicuous. The
power spectra of the five round-trip time series are shown in
the right-hand column of Fig. 2. The dc component at 0 MHz
was omitted for clarity. The spectrum for the case without
feedback [plot (a)] has harmonics of the round-trip time.
Plots (b)—(f) have spectra with specific peaks that are indica-
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FIG. 3. (a) Ratio of standard deviation to the mean for the laser
without feedback. (b) Ratio of standard deviation to the mean for
the laser with feedback of different delays. The error bars in both
plots are the statistical standard error based on a sample set of five.

tive of periodic dynamics. Plots (g)—(i) again show harmon-
ics of the round-trip time and a rising background level as
the dynamics become more complicated. Here we see that
the dynamics are qualitatively changing as we adjust the de-
lay time. At short delays the time series are periodic and can
be represented by a few Fourier modes while many more
modes are required at longer delays.

To quantify the increase in fluctuation size seen in the
time-series plots, we examine the variation of the means and
standard deviations of the time series with varying feedback
delay time. The means remain approximately constant over
the changing delay, but the standard deviations increase. To
compare the increase we calculate the ratio of the standard
deviation of the time series to its mean. Figure 3 shows the
mean and standard error of these ratios for the five time
series taken at each delay. The standard deviation increases
from 3% of the mean for the laser without feedback and
shorter delay times to around 35% of the mean at long de-
lays. To interpret these results, we should note that the feed-
back level has been carefully maintained constant at k=1%.
The dramatic rise in the standard deviation is seen to occur at
the 10 ws delay. The large error bars on the last two data
points are caused by the changing temporal patterns for the
intensity time series that were sampled to compute the stan-
dard deviation. These statistics describe the size of the fluc-
tuations but do not tell us about the complexity and variabil-
ity of the round-trip patterns.

Another way to visualize the data to help us see the com-
plexity of a round-trip pattern is with a time-delay embed-
ding. These are usually used to reconstruct the phase space
of a dynamical system and require careful calculation of the
number of dimensions needed to unfold the attractor and the
proper delays to use to sample the data [26,27]. Because the
goal of our embeddings is merely to obtain a qualitative
sense of the complexity of a round-trip pattern, we use only
three dimensions and do not calculate the number of dimen-
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sions needed to thoroughly represent the phase space. The
resulting trajectories are projections into three dimensions of
the true phase-space trajectories. Each point of the trajectory
has three coordinates: I(t—T,—T,), I(t—T),), and I(r) where
I(?) is the intensity at time ¢ and T and T, are the embedding
delays. Following the procedure recommended in Ref. [36]
the first minimum of the mutual information of the time se-
ries is used to determine the embedding delay. The average
mutual information (in bits) between time series X and time
series Y, M(Y;X) is

M(Y;x>=2p<x,y>log2< plx.y) ) (1)

oy p()p(y)

where p(x,y) is the joint probability that X=x and Y=y, and
p(x) and p(y) are the marginal probabilities that X=x and
Y=y, respectively. In our case, X — I(¢) and Y — I(t—T),). The
mutual information gives the reduction in the uncertainty of
Y for a given measurement of X [35]. The longer the delay,
the more the coordinates will become uncorrelated. Using
the first minimum gives us the most independent pair of
coordinates that are not completely uncorrelated. To find the
second embedding delay, 7,, we use the minimum of the
mutual information of Z given X and Y [37]. We calculate the
second delay using the minimum of the mutual information

M(Z:X.Y)= 2 P(X,y,z)log2<M) ’

2
Xp,2 px,y)p(z) @

where p(x,y,z) is the joint probability that X=x, Y=y, and
Z=z. For both Egs. (1) and (2) the probabilities are calcu-
lated using histograms of the entire 1-ms time series with 25
bins for each dimension. The intensities of each time series
are rescaled from O to 1 and the histogram applied over this
range. The embedding delays calculated are used to qualita-
tively examine the complexity of a typical round-trip pattern
for each feedback delay case.

Figure 4 shows the time-delay embedding of the first
round trip shown in each of the plots in Fig. 2. Comparing
plot (a) for the laser without feedback to plots (b)—(f) shows
that feedback with a short delay simplifies the round-trip
patterns. The cloud in plot (a) is transformed into more or-
ganized structures of loops. The high-frequency features in
Figs. 2(c) and 2(d) appear in Figs. 4(c) and 4(d) as small
oscillations overlaid on the low-frequency structures. In plot
(g) where the time delay is increased to 10.3 us, the round-
trip patterns become complex again and are qualitatively
similar to plot (a), but with larger fluctuations. At long delays
the fluctuation size increases dramatically, and so plots (h)
and (i) require a larger scale to display the data. These two
plots also show that the round-trip structure is more complex
at long delays than at short delays. The time-delay embed-
dings provide a qualitative view of the complexity of a round
trip. Now we proceed to examine the long-term evolution of
the round-trip patterns over the entire time series.

B. Spatiotemporal representation

To examine the complexity and variability of the round-
trip patterns, the time series must be represented in a new
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(a) No feedback (b) T=0.068 us

1.1 1
It-T,-T,) 09 1)
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All plots have the same scale

1
2 o
as plot (a) except (h) and (i).

way that shows us information on the time scales of 7, and 7.
A spatiotemporal representation of the data is used to exam-
ine the dynamics of a system over many intervals of 7,. We
use 7, since 7 varies from run to run and 7, is consistent for
all of the time series.

To reduce the amount of data to more manageable sizes,
we plot only every tenth round trip of 4500 total round trips.
Since the round-trip patterns do not change over the scale of
10 round trips, we still obtain an accurate representation of
the dynamics (Fig. 2 shows this stability over five round
trips). Each time series is rescaled from O to 1 to better see
the features in the fluctuations. Now two problems must be
addressed to create the spatiotemporal representations. First,
the time series is composed of discrete data, and the end of
the round trip will most likely lie in the gap between mea-
surements. We improve our precision in this respect by lin-
early interpolating nine data points between our existing data
to give a resolution of 0.1 ns. The second issue is that there
is uncertainty in the round-trip time measurement, so we do
not know exactly which data point to use to start the next
round trip. This error grows as we skip round trips. We can
sidestep this problem by using the fact that the intensity pat-
tern repeats every round trip. To determine the starting ele-
ment of the next round trip to stack on our plot, we use a
correlation measure
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(c)t=0.118 us

FIG. 4. (Color online) Time-
delay embeddings of the first
round trip shown in Fig. 2. Plot
(a) is for the laser without feed-
back. The rest of the plots are for
the laser with feedback with the
time delay, 7, given. The embed-
ding delays, T, and T,, are also
given. The gray (blue) curve is the
three-dimensional trajectory, and
the black curves are 2D projec-
tions onto the bottom and right-
hand sides of the plots. The data
points are 1 ns apart. Plots (a)—(g)
have the same scale. Plots (h) and
(i) have a larger scale due to the
larger fluctuations in these time
series. The plots are centered
about 1 because each time series
was normalized to its mean.

C(s) = 2 (1 () =L DL+ 9) = (1,01, (3)

where I,_,(¢}) is the intensity of the previous round trip
where 1; indexes the position in the ring, 7,(z,) is the intensity
of the current round trip at position #;, (I,_;) is the time
average over the previous round trip, and (7, ) is the time
average of the current round trip shifted by s [38]. A range of
*5 ns centered on the estimate of the starting point was
used for s. The correlation usually selected elements within a
range of =1 ns or less of the estimate. The correlation will
favor lining up high-frequency structures more than low-
frequency structures because the high-frequency structures
vary more over the correlation range. Low-frequency com-
ponents do not vary much over a small range, and so the
correlation from a low-frequency signal is more uniform,
allowing noise or other features more influence on C(s). A
tighter range on s of =1 ns was needed for the case where
7=219 ns because these time series had a significant low-
frequency component with a small amplitude high-frequency
component overlaid on it. The larger range of s allowed the
correlation to select starting points that were far apart from
each other, resulting in artificial discontinuities.

Figure 5 shows spatiotemporal representations for the first
4500 round trips (using every tenth round trip) of the time
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series plotted in Fig. 2 and Fig. 4. The data shown in the
previous figures occurs around round trip 2340 in the plots of
Fig. 5. The variety of dynamics produced when changing the
feedback delay time is illustrated clearly. Figure 5(a) shows
the dynamics of the laser without feedback. More informa-
tion can be presented in this type of plot than in a time-series
plot. Structures in the round-trip pattern can be stable for
hundreds or even 1000 round trips or may slowly vary on
these time scales. There is little regular structure within a
round trip. Figures 5(b), 5(¢), and 5(f) show patterns of ver-
tical stripes. These stripes correspond to the regular oscilla-
tions seen in Fig. 2 for these cases. The round-trip patterns
can be stable for hundreds of round trips, and certain oscil-
lation frequencies are maintained even as the patterns evolve
into new periodic patterns. Figure 2(c) shows a high-
frequency oscillation overlaid on a low-frequency oscilla-
tion. The corresponding power spectrum shows a peak at 2
times the round-trip frequency and group of three peaks near
125 MHz. Figure 5(c) shows us that the low-frequency os-
cillation is not a harmonic of the round-trip frequency. The
low-frequency peaks travel along the ring while the high-
frequency peaks stay in place. The same phenomenon occurs
in Fig. 5(d), but it is hard to see the high-frequency oscilla-
tion because it has a small amplitude. It is visible in the
power spectrum as a collection of peaks near 225 MHz and
can also be seen in the time-delay embedding in Fig. 4(d).
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All plots have the same axes as plot (a).

(c) 1=0.118 ps

‘0000

FIG. 5. (Color online) Spa-
tiotemporal representations of the
intensity dynamics for a laser with
(a) no feedback and (b)—(i) feed-
back with the time delay, 7, listed.
The laser intensities are rescaled
from O to 1 for each time series,
with the color bar indicating the
value of the normalized intensity
on the plots. All plots have the
same axes as plot (a). Every tenth
round trip is plotted.

(H =105 ps
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(i) t=187 us
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Analysis of the power spectra for these two cases shows that
the high-frequency oscillations are harmonics of the fre-
quency corresponding to a period of 213.95 ns, and the low-
frequency oscillations are harmonics of the frequency corre-
sponding to 214.22 ns. This could be caused by two
polarization states that oscillate in the cavity simultaneously
at different wavelengths due to the birefringence in the fiber.
Figure 5(g) shows that the regularity of the round-trip pattern
is lost for longer delays. Figures 5(h) and 5(i) show how the
character of the plot changes for the longest time delays.
Closer examination reveals that two-dimensional features re-
peat themselves with a period equal to the feedback delay.
While looking at the data on the scale of a round trip shows
a complex pattern, the spatiotemporal representation shows
that these patterns quickly vanish but reappear hundreds or
even 1000 round trips later. The spatial position of the pat-
terns shifts because 7 is not commensurate with 7,. The time
scale of the delayed feedback is being imprinted on the dy-
namics.

The long 7 time series show repetition of a pattern with a
period of 7. Figure 6 shows the full 1-ms time series from
which the data in Figs. 5(h) and 5(i) was extracted. The case
for the laser without feedback is shown for comparison, and
bars of length 7 are shown on the plots for the cases with
feedback. The spatiotemporal representations in Fig. 5(h)
and 5(i) show that these long time-scale patterns have com-
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FIG. 6. Envelope of the full
1-ms time series of the intensity
dynamics for a laser with (a) no
- feedback and (h)—(i) feedback
with the time delay, 7, listed. The
labeling corresponds to the plots
in previous figures. (a) and (h) are
offset for clarity. The bars on plots
(h) and (i) visually show the
length of 7 for each plot.

Time (us)

plex round-trip patterns. These round-trip patterns evolve
and reappear over 100 us later as the overall pattern repeats
every 7. The long pattern is essentially stored in the long
transmission lines in the characteristics of the light moving
through the lines. As the signal is fed into the second laser
cavity, it is “processed” to reproduce the intensity pattern.

C. Karhunen-Loeéve decomposition and spatiotemporal
complexity

The complexity of the dynamics can be quantified by tak-
ing KL decompositions of the spatiotemporal representa-
tions. The procedure [31,38—40] is performed on a set of
spatiotemporal data u(x;,n,) which is a discrete array of data
with each point indexed by a position around the ring, x;, and
a round-trip number, n,. First, for each value of X; we sub-
tract the mean for that position j averaged over all n,. Next,

we compute the autocorrelation matrix, K, with elements
K(xjsxj') = <M(Xj,”t)u(xj/,”r)>, 4)

where the angle brackets refer to time averaging. Then we

calculate the eigenvalues )ti and eigenvectors ¢; of K. The
eigenvectors are orthogonal KL modes that describe a spatial
pattern of the intensity over a round trip. The original data
can be written in terms of an expansion

u(xj,n,) = E a(n,) w;(x,) (5)

that uses the KL modes, #;(x;), as its basis. Each mode has a
coefficient, ¢;(n,), that weights the impact of that mode on
the round-trip pattern at round trip n,. The coefficients as a
function of time are calculated with a;(n,)==u(x;,n,)¢i(x)),
where

(ai(n)ay(n)) = \;8y. (6)

):i is the eigenvalue corresponding to KL mode i and Jj; is
the Kronecker & function. The coefficients come from pro-
jections of the data onto the KL modes, so the larger the
eigenvalue the more the KL mode represents the structure of
the round-trip pattern. The modes with the largest eigenval-

T T T T T T T
0 100 200 300 400 500 600 700

T T
800 900 1000

ues will be the most important in the expansion of Eq. (5) so

we order the eigenvalues from largest, ):1, to smallest, ):,l,
and normalize them by the sum of all the eigenvalues. These
normalized eigenvalues, \;, will be used to determine the
complexity of the data.

Figure 7 shows the results of a KL decomposition on the
spatiotemporal representation in Fig. 5(g) with a time delay
of 10.3 ws. Figure 7(a) is the spatiotemporal representation.
Figure 7(b) shows the three KL modes where mode 1 has the
largest eigenvalue, mode 2 has the second largest eigenvalue,
and so on. Mode 1 dominates early and again at the end of
the data after its coefficient, plotted in Fig. 7(c), changes sign
half-way through. Mode 2 is significant for most round trips
and mode 10 has very little impact on the dynamics at any
time. An example of a KL decomposition on a more complex
time series is shown in Fig. 17 below.

The first method of quantifying the complexity considers
how many terms are needed in the expansion in Eq. (5) to
accurately reconstruct the original spatiotemporal data set
[31,40—42]. This number has been called the KL dimension,
Dy, in previous work [42]. The importance of the mode to
the reconstruction is given by the eigenvalues, \, through the
relation in Eq. (6). Figure 7(d) shows a logarithmic plot of
the eigenvalue spectrum for the 25 largest eigenvalues on the
left-hand (red) vertical axis. The rate of decay is very large
for smaller i and then levels off at a smaller decay rate after
about i=12. The eigenvalues decay more quickly than expo-
nentially at first, meaning that the expansion in Eq. (5) can
represent the spatiotemporal data accurately with only a few
terms. Data with stable structures can be represented by a
few KL modes, but changing round-trip patterns will require
more KL modes to describe the evolving structures. To de-
termine how many modes, Dy;, are needed, we sort the nor-
malized eigenvalues in decreasing order and compute

N
S(N) =D\, (7)
i=1

until S(N)=0.95, where i=1 corresponds to the largest ei-
genvalue, i=2 corresponds to the second largest eigenvalue,
and so on. The smallest value of N that meets the criteria is
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FIG. 7. (Color online) KL decomposition for 7=10.3 us. (a)
Spatiotemporal representation of the intensity dynamics from Fig.
5(g). (b) KL modes associated with the largest two eigenvalues and
the tenth largest eigenvalue. Modes 1 and 2 are offset for clarity. (c)
Expansion coefficients for the KL modes in (b). (d) The 25 largest
eigenvalues are plotted on the left-hand axis with gray +’s (red +s),
and the cumulative sum of the eigenvalues is plotted with black
dots on the right-hand axis. The eigenvalues are normalized by the
sum of all the eigenvalues. The dotted line shows the cutoff §
=0.95.

the value assigned to Dg;. The 95% level was chosen arbi-
trarily. Figure 7(d) shows S(N) and the 95% cutoff. For this
case three modes are needed to achieve a 95% reconstruction
accuracy using Eq. (5). Figure 8(a) shows the average num-
ber of KL modes for the laser without feedback needed to
represent the intensity wave forms with 95% accuracy. Fig-
ure 8(b) is the same but for the laser with different feedback
delays. The number of modes needed for accurate represen-
tation increases for larger delays as the delay time scale im-
presses itself on the dynamics, the round-trip patterns vary
more from round trip to round trip, and the overall dynamics
becomes more complex.

This method suffers from the arbitrary 95% accuracy re-
quirement and the difficulty in selecting this value when the
eigenvalue distributions have a knee in them such as the one

30 Tal ®) . 30
25 F 25
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(0]
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o -1 0 1 2
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FIG. 8. (a) Number of KL modes needed to reconstruct the
spatiotemporal plot for the laser without feedback to 95% accuracy.
(b) Number of KL modes needed for 95% accurate reconstruction
of the spatiotemporal plot for the laser with feedback of different
delays. (c) Entropy for the laser without feedback. (d) Entropy for
the laser coupled with feedback of different delays. The error bars
in these plots are the statistical standard error based on a sample set
of five.

around i=12 in Fig. 7(d). The second method uses the entire
eigenvalue spectra through a connection with information
theory. We interpret \; to be probability to find the system in
the state ¢; [31,34] and calculate the entropy H,

H==-2, Pilog, Pi== 2 \;log, \;. (8)

This measure of complexity considers the KL modes to be
states of the system. If only one KL mode described the
system (A;=1,\;2;=0) then H=0 because our uncertainty
about the state of the system would be zero. Additionally, it
has been proven that the KL basis minimizes the Shannon
entropy as calculated with Eq. (8) [31,34].

We calculated H for several 2D images of uniformly dis-
tributed random numbers with the same number of pixels as
our spatiotemporal representations. These images had an av-
erage value of H of about 8 bits per pixel [43]. Figure 8(c)
shows the Shannon entropy for the laser without feedback
and Fig. 8(d) shows the entropy for the laser with delayed
feedback. The Shannon entropy decreases from 2.5 for the
laser without feedback to a minimum of about 1.3 for the
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FIG. 9. Optical spectra of the laser. (a) is for the laser without
feedback. (b)—(i) are for a laser with feedback with a delay, 7, as
listed.

laser with feedback delayed by 10 us. The Shannon entropy
went up for the longest two delays to around 3. These results
are similar to the results from calculating Dy in the first
method except here we see a decrease in complexity for short
delays that was not observed in Fig. 8(b).

D. Optical spectra

The optical spectra of the laser are presented in Fig. 9.
The optical spectrum analyzer data acquisition is not fast
enough to capture the optical spectra on the time scale of a
round trip. Each peak is a spectral envelope of the wave-
lengths measured over the scan time. Due to the length of the
laser cavity, there are thousands of cavity modes that fit
within the envelopes. The resolution of the spectrum ana-
lyzer is 0.1 nm. When feedback is applied, we often notice
the presence of additional peaks, and the lasing frequency is
generally spread over a wider wavelength range than for the
laser without feedback. When the spectral peaks are sepa-
rated we can usually observe that the width of the peaks are
comparable to case (a) without feedback.

IV. TWO MUTUALLY COUPLED RING LASERS

We now want to compare the measurements for a single
laser with feedback with what is observed when two fiber
lasers are mutually coupled together with a delay, 7. We re-
peat the measurements and analysis of the preceding section
with two coupled ring lasers whose cavity lengths are within
1 cm of each other and have 7,=213.9 ns. The active fiber in
the two amplifiers is identically doped and matched in length
to within 1 mm. The experimental setup is shown in Fig. 10.

PHYSICAL REVIEW E 78, 016208 (2008)
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FIG. 10. Experimental setup for two coupled lasers. The arrows
show the direction of light propagation through the rings and the
coupling lines. FA, erbium-doped fiber amplifier; PC, polarization
controller; VA, variable attenuator; DL, delay line; OSC A, photo-
detector and oscilloscope used to measure laser dynamics; OSC B,
photodetector and oscilloscope used to monitor the coupling lines;
OSA, optical spectrum analyzer.

The power in both rings was matched by adjusting the
pumps, and the variable attenuators were used to match the
power in the coupling lines. Laser 1 was pumped at 4.7 times
its threshold pumping level, and laser 2 was pumped at 4.6
times its threshold. The coupling strength, «, was 1.7% for
this setup. Extra fiber was added to the coupling lines to vary
the coupling time, 7, from 0.050 us to 120 ws. Ten time
series were taken for each delay time.

A. Fluctuation size and dynamical complexity of round-trip
patterns

The dynamics of the normalized laser output is plotted
over five round trips in Fig. 11(a) for the uncoupled lasers.
The time series for laser 1 is offset above laser 2 for all plots
in Fig. 11. The time-series pairs are also offset for clarity
since their means all lie at 1 due to the normalization. Fig-
ures 11(b)-11(h) show the results for the mutually coupled
lasers with the delays listed. The power spectra of the five
round trips for laser 1 is shown in the left-hand column. Like
the single laser with feedback, the coupled laser system
shows a variety of dynamics starting with regular patterns in
(b)—(f). A superposition of patterns with high and low fre-
quencies is seen in (e), making a transition to complicated
patterns repeating every round trip in (g) and (h). The size of
the fluctuations increases for the coupled lasers even at the
shortest delays. The power spectra show that the uncoupled
lasers require many Fourier modes to represent them, but
that the dynamics for short delays are very periodic and re-
quire only a few Fourier modes. For long delays the dynam-
ics become more complicated and the background level of
the power spectra rise. We see again a shift in the dynamics
from simple to complex as the delay increases.

To quantify the increase in fluctuation size we plot the
ratio of the standard deviation to the mean as before. Figure
12 shows the ratios for the mutually coupled lasers and also
includes the data from Fig. 3 for comparison. In plot (a) there
are two values for laser 1 because two sets of data were
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FIG. 11. Laser output intensities over five round trips where the round-trip time is 214 ns. Each time series is normalized to its mean. The
plots are offset for clarity. For each pair of time series, laser 1 is offset above laser 2. (a) is for the uncoupled lasers. (b)—(i) are for the lasers
coupled together with the time delay, 7, given. The right-hand column has power spectra of the five round trips shown for each time series
of laser 1. The DC component at 0 Hz has been omitted to better show the detail of the spectra.

taken: One set with laser 1 setup for the feedback experiment
and another set for laser 1 setup for the mutually coupled
experiment. This was done to compare the mutually coupled
results with the uncoupled laser operating under identical
conditions. Primary differences between the two cases in-
clude different pump strengths and different tuning of the
optical cavity with the polarization controllers. These were
changed to match the power in the rings and the lasing wave-
lengths of the two lasers. The coupled lasers have larger

fluctuations except at long delays when all three data sets are
comparable. The ratio increases with increasing delay for the
coupled lasers except when the delay time is 4 ns more than
the round-trip time. The fluctuations are the largest for this
delay. Without coupling, the system is constrained to repeat
every round trip. With coupling, it also repeats every delay
time. If the times are the same, both of these demands on the
dynamics are the same.
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laser data (O) are reprinted from Fig. 3 for comparison.
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Next we examine the complexity of the round trips for the
mutually coupled lasers. The time-delay embeddings for the
first round trip plotted in Fig. 11 are shown in Fig. 13. All of
the plots have the same axes as the plots in (a) for the un-
coupled lasers. The scale is the same as in Figs. 4(h) and 4(i),
and it is easy to see how the size of the fluctuations increases
even for short delays. Plots (d) and (h) are partially clipped at
this scale. If the scale is reduced, Fig. 11(a) is similar to Fig.
4(a). For coupling time delays of 1 us or less, the round-trip
patterns form regular repeating structures. For longer time
delays, the round-trip patterns become more complex as
shown in (g) and (h).

B. Synchronization

Figures 11(b)-11(g) and 13(b)-13(g) show that the shape
of the round-trip patterns for laser 1 and 2 are similar for
each pair for the short section of the time series shown. This
provides evidence of synchronization over a few round trips,
and we want to see if it holds over the entire 1-ms time series
measured. To quantify the level of synchronization we cal-
culate the cross correlation, Cj,, of the intensity time series
of the two lasers using

FIG. 13. (Color online) Time-
delay embeddings of the first
round trip shown in Fig. 11. Laser
1 is shown in the left-hand box,
and laser 2 is shown in the right-
hand box for each pair. Plot (a) is
for the uncoupled lasers. The rest
of the plots are for the mutually
coupled lasers with the time delay,
7, given. The embedding delays,
T, and T,, are also given. The
gray (blue) curve is the three-
dimensional trajectory, and the
black curves are 2D projections
onto the bottom and right-hand
sides of the plots. The data points
are 1 ns apart. All plots have the
same scale and are centered about
1 because each time series was
normalized by its mean.

(f)t=1.03 us

{
(= N[= 1>

h) t =120 us
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where o; is the standard deviation of the entire time series for
laser i, J is the number of data points of overlap after sliding
time series 1 by the time shift 7, I,(¢) is the intensity of laser
i at time ¢, and angle brackets refer to the time average of the
entire time series. If Cj,=1, then the time series are lag
synchronized at the lag 7. If C;,=—1, then the signals are
correlated but out of phase by one-half of a cycle. If Cy,
=0 then the time series are uncorrelated and not synchro-
nized. Since previous work [20,21] found that the lasers lag
synchronize with a shift 7,=7 when chaotic, we compute
C»(7,) over a range of 7, that includes 7 for each case.

Figure 14 shows the cross correlations of the time series
plotted in Fig. 11 for different time shifts, 7,. Plot (a) is for
the uncoupled lasers, and the magnitude of the cross corre-
lation is near zero. Plots (b)—(h) are for the lasers when they
are mutually coupled. The delays are listed and also shown
visually by a thick black bar. Note that the horizontal scale
varies from plot to plot. Cross correlations (b), (c), and (e)-
(g) are periodic with short periods compared to the coupling
delays because the time series are periodic at those frequen-
cies. Plots (b)—(h) show the leader-follower symmetry ob-
served in the chaotic case, but the lasers are synchronized at
7only for plots (e) and (h). Plot (b) shows an isochronal case
where the lasers are synchronized with no delay. Plots (c),
(f), and (g) are not isochronal, but are not synchronized at 7
either. For plots (b), (c), (f), and (g), C,(7,) =—1 indicating
the lasers are approximately one-half a cycle out of phase
with each other at 7,=7. For plot (¢) C;,(7) is at a maximum
with respect to the low-frequency variation of Ci,(7,) but is
at a local minimum for the high-frequency variation. For plot
(d) 7,= 7, and synchronization occurs both with no delay and
again at 7,=7. Because the round-trip patterns change so
slowly, it is impossible to tell if this case has lag synchroni-
zation or isochronal synchronization. Plot (h) shows no cor-
relation except when 7,=~ * 7. The two peaks are composed
of spikes occurring every 7, that are not visible in the reso-
Iution of the plot. The long shift required for correlation
explains why the plots in Figs. 11(h) and 13(h) show no
evidence of synchrony over the short section of the time
series shown.

The synchronization behavior for the lasers under peri-
odic conditions is different from the behavior observed under
chaotic conditions in [20]. There the synchronization was
always observed to occur with a shift of 7,=* 7. Here the
periodic nature of the dynamics causes synchronization to
occur for 7,<7. Plot (b) shows an isochronal case that was
not observed for the chaotic data, and plot (d) is a special
case as described above. We note that the authors of refer-
ences [24,44] have measured stable isochronal synchroniza-
tion in two mutually coupled semiconductor lasers with self-
feedback when the coupling delay and the feedback delays
were equal. The difference between their experiments and
ours is that they have three time parameters: the short round-
trip time, the mutually coupling delay, and the self-feedback
delay. In our work we examine the self-feedback and the
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FIG. 14. Cross correlations of the entire 1 ms time series corre-
sponding to the time-series pairs shown in Fig. 11. Plot (a) is for the
uncoupled lasers. The rest of the plots are for the mutually coupled
lasers with the time delay, 7, given. The thick black bars show the
delay time graphically. Note that the horizontal scale of each plot
changes. Negative (positive) time shifts correspond to laser 1 (2)
leading.

mutual coupling in separate experiments and only have two
time parameters: the round-trip time and the delay corre-
sponding to the effect we are studying. Case (h) has more
complicated structures over a round trip, and its power spec-
trum in Fig. 15(h) shows no single strong periodicity domi-
nating the time series. It follows the pattern for chaotic data
that was observed in [20].

C. Spatiotemporal representation

As in the single laser case with feedback, we want to
visualize the full time series of the mutually coupled lasers.
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All plots have the same axes as plots (a).

Normalized position Normalized position Laser 1 Laser 2
0 0.5 10 0.5 1 (b) = =0.050 us
4000
LALELE LR LR L]
3000
Round
trip 2000
number
1000
() t=0.109 s (d)  =0.218 s
1]
0.75 -
(e) 1 =0.542 s (f) =103 ys
0.5
H
(h) + =120 us
0.25 -
0

FIG. 15. (Color online) Spatiotemporal representations of the intensity dynamics of the mutually coupled lasers for (a) lasers 1 and 2
uncoupled and (b)—(h) with the coupling delays, 7, indicated. The laser intensities are rescaled from 0 to 1 for each time series with the color
bar indicating the value of the normalized intensity on the plots. All plots have the same axes as plot (a).

This allows us to see the stability of the round-trip patterns
and the synchronization. Figure 15 shows spatiotemporal
representations for the time series containing the data in
Figs. 11 and 13 which were around round trip 2430. Again,
every tenth round trip is plotted up to 4500 round trips. Fig-
ures 15(b)-15(d) and 15(f) show very regular stable round-
trip patterns that persist for thousands of round trips. Figure
15(e) shows a case of the superposition of low and high
frequencies. Power spectra in Fig. 11 show two groups of
peaks. The high-frequency peaks are harmonics of the fre-
quency corresponding to 213.95 ns and the low-frequency
peaks are harmonics that correspond to 213.78 ns. Figure
15(h) appears random at first, but structures can be seen that
repeat on the order of 2 times the round-trip time. The peaks
in the time series alternate from one laser to the other and it
takes one delay time to move from one laser to the other. The
result is a repeating pattern in the dynamics with a period of
two delay times.

This repeating pattern is shown clearly in Fig. 16. These
are plots of the envelope of the full 1-ms time series from
which the data in Fig. 11 was extracted. The plots are labeled

to match previous plots. The lasers are synchronized with a
delay of 7. The repeating pattern of one laser is now 27. This
is different than the single laser with feedback which had
patterns repeating every 7 as shown in Figs. 6(h) and 6(i).
The bottom of Fig. 16 shows a five round-trip long section of
the long data set for each laser. These two sections are offset
by the time shift at which the cross correlation shown in Fig.
14(h) is a maximum. The two data sets match and show that
the lasers are delay synchronized at both long and short time
scales.

Figures 15 and 16 are consistent with the cross-correlation
data presented in Figs. 14(g) and 14(h). Figure 15(g) shows
the repetitive pattern with a time scale smaller than 7 that
produces the multiple spikes in C,,. Figures 15(h) and 16(h)
show that the intensity pattern repeats with a period of 7, so
Cy, is near zero until 7;,=7. There are spikes that occur every
7, as well that are not visible in Fig. 14(h) due to the long
time scale shown. As the time series becomes more complex
the two lasers synchronize with a time shift equal to 7 such
as the chaotic data in [20].
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FIG. 16. Full 1-ms time series of the intensity dynamics for the lasers (a) when uncoupled and (h) when mutually coupled with 7
=120 us. The labeling corresponds to the plots in previous figures. For each pair laser 1 is offset from laser 2 for clarity. (a) is also offset
from (h) for clarity. The bar on plot (h) visually shows the length of 7. The small plots on the bottom show a five round-trip portion of the
long-time series from each laser. These small portions are offset by 122.319 us which is the offset given by the maximum of the cross
correlation in Fig. 14(h). The data are delay synchronized over both the round-trip and long coupling delay time scales.

D. Karhunen-Loéve decomposition and spatiotemporal
complexity

To quantify the complexity of the round-trip patterns we
analyzed the spatiotemporal representations using KL de-
composition. An example of the results for a complex time
series is shown in Fig. 17 for comparison to the simpler
dynamical case shown if Fig. 7. Figure 17(a) shows the spa-
tiotemporal representation for laser 1 from Fig. 15(h). Figure
17(b) shows three KL modes where the mode numbers cor-
respond to the eigenvalue size again. The modes are more
complex here compared to those shown in Fig. 7(b) because
this data set is more complex. Comparing Fig. 17(c) to Fig.
7(c) illustrates the different behavior of the expansion coef-
ficients when the data is more complex. Here mode 10 is
more significant than in the case in Fig. 7(c) and is even
comparable to mode 1 for some round trips.

The normalized eigenvalue spectrum is shown in Fig.
17(d). The largest eigenvalue is an order of magnitude
smaller than in the less complex case and the amplitudes fall
off exponentially. The complex case requires 23 modes to
reach our cutoff while the simpler case in Fig. 7 only needs
three. Figures 18(a) and 18(b) show the average number of
KL eigenvalues (KL modes) needed to reach the cutoff of
95% of the sum of all the eigenvalues. Figures 18(c) and
18(d) show the entropy for the same cases [43]. The data
from Fig. 8 is included for comparison. In plots (a) and (c)
there are two values for laser 1 for the same reasons given
for Fig. 12. For the coupled lasers the number of modes
needed increases for larger delays just like the single laser
case. At lower delays the mutually coupled system needs
fewer KL modes to capture the simple periodic dynamics. At
larger delays the mutually coupled system needs more KL

modes than the single laser with feedback to represent the
variety of round-trip patterns produced. The entropy calcula-
tions for the mutually coupled case were previously pre-
sented in Ref. [43] and are shown here for comparison with
the first method. They show similar results with a decrease in
complexity for short delays and an increase in complexity for
the longest delays.

One striking difference is the complexity of laser 2 in
plots (a) and (c) for the uncoupled case. Counting the KL
eigenvalues rates the complexity of laser 2 higher than the
longest delay case and much higher than laser 1 uncoupled.
The entropy of the two uncoupled lasers is similar which is
expected since the spatiotemporal representations are similar.
The reason for the discrepancy is revealed by examining the
eigenvalue spectra of two typical cases. Figure 19 shows the
25 largest eigenvalues and the cumulative sum of the eigen-
values for the KL. decomposition of the spatiotemporal rep-
resentations shown in Fig. 15(a). S for laser 1 reaches the
95% cutoff before the decay rate of the eigenvalues flattens.
For laser 2 the knee is rounded before S crosses the cutoff
and it takes many more eigenvalues to reach it. Thus the
arbitrary cutoff has a significant impact on the final value of
Dy .. H provides a better measure of complexity for our la-
sers because we do not need to set a parameter arbitrarily and
it gives similar values for similar spatiotemporal representa-
tions and eigenvalue spectra [compare Fig. 15(a) and Fig. 19
with Figs. 17(a) and 17(d)].

E. Optical spectra

The optical spectra of the lasers is presented in Fig. 20.
Each peak is a spectral envelope of the wavelengths mea-
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FIG. 17. (Color online) KL decomposition for 7=187 us. (a)
Spatiotemporal representation of the intensity dynamics of laser 1
from Fig. 15(h). (b) KL modes associated with the largest two ei-
genvalues and the tenth largest eigenvalues. Modes 1 and 2 are
offset for clarity. (c) Expansion coefficients for the KL modes in (b).
No single mode dominates for long periods of time. (d) The first 25
normalized eigenvalues are plotted on the left-hand axis with gray
+’s (red +’s) and the cumulative sum of the eigenvalues is plotted
with black dots on the right-hand axis. The dotted line shows the
cutoff §=0.95. Compare with Fig. 7.

sured over the scan time of the OSA. The figure shows that
the lasing wavelengths can shift when the lasers are coupled.
For Figs. 20(c) and 20(g)-20(i) the spectra is confined to a
single peak which we can compare to the uncoupled laser
spectra. The height of the peaks increases by 4 times or
more. This indicates an increase in the coherence of the op-
tical fields. The increase is partially due to the reduction in
width of the spectral peak which pulls more power into the
central wavelengths raising the peak intensity. When the la-
sers are coupled the full width at half-maximum decreases
from 0.2 nm to 0.1 nm. This could be due to the restriction
imposed on the conditions required for lasing in the two
cavities. Each cavity is tuned to operate at a certain wave-
length by adjusting the polarization controllers in the cavity.
Since the fiber is birefringent the light must have certain

when uncoupled. (b) Number of KL modes needed for 95% accu-
rate reconstruction of the spatiotemporal plot for single laser with
feedback (O) and laser 1 (blue ¢ ) coupled to laser 2 (red X) with
different delays. (c) Entropy for a laser without feedback (O) and
laser 1 (blue ¢) and laser 2 (red X) when uncoupled. (d) Entropy
for single laser with feedback (O) and laser 1 (blue <) coupled to
laser 2 (red X) with different delays. The error bars in all plots are
the statistical standard error based on a sample set of 10 for the
coupled lasers and five for the single laser. The single laser data
(black circles) are shown from Fig. 8 for comparison. The coupled
laser data in (d) was presented in Ref. [43].

polarization states to experience high gain. When coupled to
the other laser, only modes with polarization states that sat-
isfy both laser cavities will be amplified. This limits the
range of wavelengths over which the light will experience
gain and hence limits the range of lasing wavelengths.

V. DISCUSSION AND CONCLUSIONS

The effect of a low level of time-delayed injected light on
an EDFRL through an extra feedback loop or from mutual
coupling to another EDFRL depends on the time delay. One
effect observed in both experiments was the increase in the
size of the fluctuations about the mean with increasing 7. For
the single laser case the fluctuation size did not increase sig-
nificantly until 7 exceeded 10 us. For the mutually coupled
lasers the fluctuation size was significantly larger at short 7
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FIG. 19. (Color online) KL eigenvalue spectra and cumulative
sum of the eigenvalues for laser 1 (<) and laser 2 (X) uncoupled.
The first 25 normalized eigenvalues are plotted on the left-hand axis
in gray (red) and the cumulative sum of the eigenvalues is plotted in
black on the right-hand axis. The dotted line shows the cutoff S
=0.95.

than the single laser case. For longer delays the fluctuation
size increased and became comparable to the single laser
case at the longest delays considered. There was a significant
spike in fluctuations at the resonant delay condition (7=7,).
The cause of the increase in fluctuation size with long delay
is an open question.

(a) Laser 1 uncoupled

(b) Laser 2 uncoupled

(c) T=0.050 us

A (d) T=0.109 us

(e) 1=0.218 us

Intensity (arb. units)

(f) T=0.542 us

(g) 1=1.03 us

/\ (h) t=10.1 us
/\ (i()T=120pus

1546 1547 1548 1549 1550
Wavelength (nm)

FIG. 20. Optical spectra of the lasers. (a) and (b) are for the
uncoupled lasers. (c)—(h) are the sum of the light from both lasers
coupled with a delay, 7, as listed.
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The complexity of the dynamics also changed with differ-
ent delays. For a single laser with a feedback delay compa-
rable to 7,, the EDFRL has periodic dynamics with periods
shorter than 7,.. For 7 much longer than 7,, the dynamics
repeat with periods of 7and 7,, and the intracavity dynamics
become more complex. Compared to the laser without feed-
back, the overall complexity as described by both the num-
ber of KL modes, Dg;, and the Shannon entropy, H, is com-
parable for small 7, decreases to a minimum at 7=10 us,
and then increases for large 7. The complexity of the dynam-
ics of two mutually coupled EDFRLs is similar to the single
EDFRL with feedback. Both Dg; and H show a marked
decrease in the complexity for short 7 as compared to the
uncoupled lasers and the single laser with short 7 feedback. It
is surprising that coupling the two lasers together could sim-
plify their dynamics. For long 7 both measures rated the
dynamics more complex than the uncoupled lasers and the
single laser with long 7 feedback. For long 7 the round-trip
patterns repeat, but now the long time-scale repetition is 27
instead of 7.

The behavior of the 7=10 us point for the single laser
with feedback highlights one of the characteristics of the KL
decomposition method as applied to our data. Figures 2(g)
and 4(g) show that the round-trip patterns for this case are
complex, yet both Dy, and H rated the overall complexity of
the dynamics as very low. This is because even though only
a few KL modes are needed to reproduce the data there are
no constraints on how complicated an individual KL mode
can be. If we had used Fourier modes it would have taken
many more modes to represent the data. Figure 7(b) shows
that the KL modes are complex in this case, while Fig. 7(c)
shows that the expansion coefficients for the first two modes
are large. Thus the complexity measures we use from the KL
decomposition describe the overall spatiotemporal complex-
ity of the data and do not quantify how complex the indi-
vidual KL modes might be. Since the KL modes have a
“length” of 7,, these measures do not measure the complexity
within a round trip.

The EDFRLs also synchronize with each other. Usually
the synchronization occurs with a time shift that depends on
the fast periodicity of the dynamics, but in two cases it oc-
curs with no shift. As the dynamics become more complex
for long delays, the lasers synchronize with a shift corre-
sponding to =7 in agreement with previous results for cha-
otic data.

The spectrum of the coupled lasers collapses to roughly
one-half of the width of the uncoupled lasers’ spectra. This
collapse of available modes does not occur in the single ED-
FRL with a feedback loop. As described above, in the mutu-
ally coupled case there are two laser cavities that define two
independent sets of constraints on the light. Only cavity
modes that satisfy the two sets of constraints will experience
gain and survive. This reduction in available modes is corre-
lated with a reduction in the complexity of the dynamics.
The ability to simplify the complex dynamics of an oscillator
by applying small amounts of feedback with short delays or
coupling oscillators together with short delays can help or-
ganize unwanted complex behavior.

The observations in this paper allow us to gain some in-
sight into the coherence time. From the measured spectra of
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the fiber lasers in Figs. 9 and 20, we see that a typical spec-
tral width of the uncoupled lasers is about 0.2 nm, or Af
=17 GHz. This width is sufficient to accommodate approxi-
mately 4000 longitudinal modes of the laser which have a
spacing of 4.45 MHz (51.5 fm). If these modes were ran-
domly phased with respect to each other, the coherence time
of the light would be estimated as 7.~ 1/A;=58 ps. Adding
a second feedback loop with variable delay time to the single
laser and measuring the standard deviation of the resulting
intensity fluctuations (Fig. 3) shows that a marked increase
occurs for a delay time of 10 us. This result is corroborated
when the two fiber lasers are mutually coupled as well (Fig.
12). The time scale of microseconds is much longer than the
estimate of 7. above. It indicates that the effective coherence
time of the fiber laser output is not determined by the mea-
sured spectral width. Instead, it is comparable to the line-
width of a single longitudinal mode. Based on estimated cav-
ity parameters, our mode width is approximately 500 kHz
which corresponds to 7,=2 us [45].

A way to interpret this much longer coherence time is to
observe that the spatiotemporal patterns in Figs. 5 and 15 are
stable over hundreds of round trips of the fiber laser cavities.
This demonstrates that the phases of the individual longitu-
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dinal modes are stable relative to each other for long periods
of time of the order of microseconds. If the lasers were com-
pletely mode locked one would notice a recurring ultrashort
pulse on every round trip. Instead the temporal patterns in
Figs. 2 and 11 show complex patterns of peaks and valleys
which indicate that not all the modes are locked. These meta-
stable repeating complex patterns could be interpreted as be-
ing due to clusters of longitudinal modes that remain in a
stable phase relationship over hundreds of round trips. Figure
15, in particular, demonstrates stable phase locking of mode
clusters of the mutually coupled lasers, giving rise to highly
regular spatiotemporal patterns.
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